Vectors

A vector is a set of coordinates. Notation: \mathbf{v} or \vec{v} .

$$\vec{v} = \langle 1, 2, 3 \rangle$$

$$\vec{w} = \langle 1, 2 \rangle$$

Here, \vec{v} is a vector in \mathbb{R}^3 , and \vec{w} is a vector in \mathbb{R}^2 . The magnitude, or norm of a vector, represented by $||\vec{v}||$, is defined as $\sqrt{v_x^2+v_y^2}$ in 2-space or $\sqrt{v_x^2+v_y^2+v_z^2}$ in 3-space.

Vector addition and subtraction

We can add vectors component-wise:

$$\vec{v} = \langle 1, 2, 3 \rangle$$

$$\vec{w} = \langle 4, 5, 6 \rangle$$

$$\vec{v} + \vec{w} = \langle 5, 7, 9 \rangle$$

We can also subtract vectors component-wise:

$$\vec{v} = \langle 4, 5, 6 \rangle$$

$$\vec{w} = \langle 1, 2, 3 \rangle$$

$$\vec{v} - \vec{w} = \langle 4 - 1, 5 - 2, 6 - 3 \rangle = \langle 3, 3, 3 \rangle$$

Geometrically, vector addition works by putting vectors "tip to tail."

Unit vectors

Vectors are often defined in terms of unit vectors: In \mathbb{R}^2 :

$$\hat{i} = \langle 1, 0 \rangle$$

$$\hat{j} = \langle 0, 1 \rangle$$

In \mathbb{R}^3 :

$$\hat{i} = \langle 1, 0, 0 \rangle$$

$$\hat{i} = \langle 0, 1, 0 \rangle$$

$$\hat{k} = \langle 0, 0, 1 \rangle$$

For example:

$$\langle 1, 2, 3 \rangle = \hat{i} + 2\hat{j} + 3\hat{k}$$

Scalar multiplication

Vectors can be multiplied by scalars component-wise:

$$\lambda \langle a, b, c \rangle = \langle \lambda a, \lambda b, \lambda c \rangle$$

Dot products

Taking the dot product is a method of multiplying vectors to produce a scalar. The formula for a dot product is

$$\langle a, b \rangle \cdot \langle x, y \rangle = ax + by$$

$$\langle a, b, c \rangle \cdot \langle x, y, z \rangle = ax + by + zc$$

Another way to write this is:

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \ ||\vec{b}|| \cos(\theta)$$

Where θ is the angle between the vectors.

The dot product geometrically represents the scalar projection of one vector onto another.

Cross products

Taking the cross product is a method of multiplying vectors to produce a vector. The formula for a cross product is:

$$\langle a, b, c \rangle \times \langle x, y, z \rangle = \langle -cy + bz, cx - az, -bx + ay \rangle$$

Cross products are non-commutative. Order does matter. $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$ (except in some very specific circumstances).

Cross products geometrically:

- From a right hand system (i.e. \vec{a} , \vec{b} , and $\vec{a} \times \vec{b}$ form a right hand system)
- Are orthogonal to the crossed vectors
- Have magnitude equal to the parallelogram spanned by the crossed vectors

Cross products always have the magnitude:

$$||a \times b|| = ||a|| ||b|| \sin(\theta)$$

Parallelepipeds

A parallelepiped is the shape spanned by three non-zero vectors. Given vectors $\vec{u}, \ \vec{v}, \ \text{and} \ \vec{w}, \ \text{the base of the parallelepiped is the parallelogram spanned by } \vec{v} \ \text{and} \ \vec{w}.$ Therefore, the area of the base is $||\vec{v} \times \vec{w}||$. The volume of a parallelepiped \mathscr{D} spanned by $\vec{u}, \ \vec{v}$ and \vec{w} can be calculated with the scalar triple product:

$$V(\mathcal{D}) = |\vec{u} \cdot (\vec{v} \times \vec{w})| = \det(u, v, w)$$

Lines

Lines are defined in terms of a point and a direction, or two points. Given a direction vector (parallel to the line), \vec{d} , and a point on the line \vec{p} , the parameterization of the line is:

$$\vec{r}(t) = \vec{p} + t\vec{d}$$

Given two points, $\vec{p_1}$ and $\vec{p_2}$:

$$\vec{r}(t) = \vec{p_1} + t(\vec{p_2} - \vec{p_1})$$

Planes

Planes are defined in terms of three non-colinear points, or a normal vector and a plane.

To get a normal vector from 3 points, $A,\ B,$ and C, compute $\vec{AB}\times\vec{AC}$

With normal vector \vec{n} and point P:

$$\vec{n}_x(x - P_x) + \vec{n}_y(y - P_y) + \vec{n}_z(z - P_z) = 0$$

Polar Coordinates

Polar coordinates are used to represent points in \mathbb{R}^2 . They are represented as (r,θ) , where $r\in\mathbb{R}$ and $\theta\in[0,2\pi)$.

To convert between Cartesian coordinates and polar coordinates:

$$r = \sqrt{x^2 + y^2}$$
 $x = r \cos \theta$
 $\theta = \arctan\left(\frac{y}{x}\right)$ $y = r \sin \theta$

Mathematica snippet: AngleVector $[\{x, y\}]$ will convert polar to rectangular.

Spherical Coordinates

Spherical coordinates are one of two generalizations to \mathbb{R}^3 of polar coordinates. They are represented as (ρ,θ,ϕ) , where $\rho\in\mathbb{R},\ \theta\in[0,2\pi)$, and $\phi\in[0,\pi]$. ρ represents the distance to the origin, θ represents the counterclockwise angle towards positive y in the xz-plane, and ϕ represents the angle towards positive x in the xy-plane.

$$\rho = \sqrt{x^2 + y^2 + z^2} \qquad x = \rho \sin \phi \cos \theta$$

$$\theta = \arctan\left(\frac{y}{x}\right) \qquad y = \rho \sin \phi \sin \theta$$

$$\rho = \arccos\left(\frac{z}{\rho}\right) \qquad z = \rho \cos \phi$$

Cylindrical Coordinates

Cylindrical coordinates are one of two generalizations to \mathbb{R}^3 of polar coordinates. They are represented as (r,θ,z) , where $r\in\mathbb{R},\ \theta\in[0,2\pi)$, and $z\in\mathbb{R}.\ r$ represents the distance to the origin, θ represents the counterclockwise angle towards positive y in the xz-plane, and z represents the distance from the xy-plane in the positive z direction.

$$r = \sqrt{x^2 + y^2 + z^2}$$
 $x = r \cos \theta$
 $\theta = \arctan\left(\frac{y}{x}\right)$ $y = r \sin \theta$
 $z = z$ $z = z$

Surfaces to remember

Cylindrical Coordinates:	
equation	description
r = R	cylinder of radius ${\cal R}$
$\theta = \theta_0$	vertical half-plane
z = c	horizontal plane
Spherical Coordinates:	
equation	description
$\rho = R$	sphere of radius ${\cal R}$
$\theta = \theta_0$	vertical half-plane
$\phi = \phi_0$	right circular cone
Rectangular Coordinates:	
equation	description
$x^2 + y^2 = z^2$	right circular cone
$x^2 + y^2 + z^2 = R$	sphere (radius R)
$x^2 + y^2 = R$	cylinder (radius R)

Calculus of Vector-Valued Functions

Calculus can be done on vector-valued functions component-wise. This includes limits, differentiation, and integration. There are some additional differentiation rules

- Sum rule: $(\vec{r}_1(t) + \vec{r}_2(t))' = \vec{r}'_1(t) + \vec{r}'_2(t)$
- Chain rule: $\vec{r}(g(t)) = g'(t)\vec{r'}(g(t))$
- Product rules
 - Scalar product rule: $(\lambda \vec{r}(t))' = \lambda \vec{r'}(t)$
 - Dot product rule: $(\vec{r}_1 \cdot \vec{r}_2)' = \vec{r'}_1 \cdot \vec{r}_2 + \vec{r}_1 \cdot \vec{r'}_2$
 - Cross product rule: $(\vec{r}_1 \times \vec{r}_2)' = \vec{r'}_1 \times \vec{r}_2 + \vec{r}_1 \times \vec{r'}_2$
 - Remember! Cross products are non-commutative.

The derivative of a vector is also called the *tangent* vector, or velocity vector. This is because if $\vec{r'}(t_0)$ is non-zero, it points in the direction tangent to the curve at $r(t_0)$. The tangent line has parametrization:

$$\vec{L}(t) = \vec{r}(t_0) + t\vec{r'}(t_0)$$

Arc length

If $\vec{r}(t)=\langle x(t),y(t),z(t)\rangle$ directly traverses curve \mathscr{L} , for $a\leq t\leq b$, the arc length, s of \mathscr{L} is:

$$\int_{a}^{b} \left| |\vec{r'}(t)| \right| = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}}$$

Speed

The velocity vector, \vec{v} , points in the direction of travel. It's magnitude is the speed:

$$v(t) = \frac{ds}{dt} = \left| |\vec{r'}(t)| \right|$$

Functions in Multiple Variables

A function can exist in *multiple variables* if it takes several parameters.

If f(x,y) is defined near P=(a,b), then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if, $\forall \epsilon>0 \ \exists \delta>0$ s.t. $0< d((x,y),(a,b))<\delta$ then $|f(x,y)-L|<\epsilon.$

A function in two variables is continuous at (a,b) if the following equation holds:

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

Partial Derivatives

The partial derivatives of f(x,y) are defined as the limits:

$$f_x(a,b) = \left[\frac{\delta f}{\delta x}\right]_{(a,b)} = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$
$$f_y(a,b) = \left[\frac{\delta f}{\delta y}\right]_{(a,b)} = \lim_{k \to 0} \frac{f(a,b+k) - f(a,b)}{h}$$

Partial derivatives can be approximated for small Δx and Δy values:

$$f_x(a,b) \approx \frac{\Delta f}{\Delta x} = \frac{f(a + \Delta x, b) - f(a, b)}{\Delta x}$$

 $f_y(a,b) \approx \frac{\Delta f}{\Delta y} = \frac{f(a, b + \Delta y) - f(a, b)}{\Delta y}$

The second-order partial derivatives are written as:

$$\frac{\delta^2}{\delta x^2} f = f_{xx}$$
 $\frac{\delta^2}{\delta x \delta y} = f_{xy}$ $\frac{\delta^2}{\delta y^2} f = f_{yy}$

Clairaut's Theorem

Clairaut's theorem states that mixed partials are equivalent as long as they are continuous: $f_{xy} = f_{yx}$.

Differentiability of Functions in Multiple Variables

f(x,y) is differentiable at (a,b) if $f_x(a,b)$ and $f_y(a,b)$ both exist, and

$$\lim_{(x,y)\to(a,b)} \frac{f(x,y) - L(x,y)}{\sqrt{(x-a)^2 + (y-b)^2}} = 0$$

where

$$L(x,y) = f(a,b) + f_x(a,b) \times (x-a) + f_y(a,b) \times (y-b)$$

Gradient Vectors

The gradient vector is defined is

$$\mathbb{R}^2 : \nabla f = \left\langle \frac{\delta f}{\delta x}, \frac{\delta f}{\delta y} \right\rangle$$
$$\mathbb{R}^3 : \nabla f = \left\langle \frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}, \frac{\delta f}{\delta z} \right\rangle$$

This gradient has the properties:

- ∇f_P points in the fastest rate of increase, and the rate of that increase is $||\nabla f_P||$
- $-\nabla f_P$ points in the fastest rate of decrease, and the rate of that decrease is $-||\nabla f_P||$
- ullet $-\nabla f_P$ is orthogonal to level curves through P

The chain rule for paths also applies:

$$\frac{d}{dt}f(\vec{r}(t)) = \nabla f_{r(t)} \cdot \vec{r'}(t)$$

Directional Derivatives

For unit vector $\vec{u} = \langle h, k \rangle$, $D_u f(a, b)$ is the directional derivative with respect to \vec{u} .

$$D_u f(a,b) = \lim_{t \to 0} \frac{f(a+th,b+tk) - f(a,b)}{t}$$

For a differentiable function f, the directional derivative in the direction \vec{u} is computed using the gradient:

$$D_u f(a,b) = \nabla f_{(a,b)} \cdot \vec{u} = ||\nabla f_{(a,b)}|| \cos \theta$$

Tangent Plane

The equation for a tangent plane can be thought of as the equation for a tangent line generalized into three dimensions. The equation for a tangent line at x_0 is (derived from point-slope form):

$$y = f(x_0) + f'(x_0) \times (x - x_0)$$

The equation for a tangent plane of f(x,y) at the point (a,b) is:

$$z = f(a,b) + f_x(a,b) \times (x-a) + f_y(a,b) \times (y-b)$$

A normal vector can be computed using this tangent plane equation.

Linear Approximation

If f(x,y) is differentiable at (a,b), the *linearization* of f centered at (a,b) is:

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

You can use this linearization to compute *linear approximations* of functions:

$$f(a + \Delta x, b + \Delta y) \approx f(a, b) + f_x(a, b) \Delta x + f_y(a, b) \Delta y$$
$$\Delta f \approx f_x(a, b) \Delta x + f_y(a, b) \Delta y$$

This can be expressed in a differential form as well:

$$df = f_x(x, y)dx + f_y(x, y)dy = \frac{\delta f}{\delta x}dx + \frac{\delta f}{\delta y}dy$$

Chain rules

If f(x,y,z) is a composite function (meaning that it can be represented in a form similar to f(x(s,t),y(s,t),z(s,t)), where s, and t are the *independent variables*), then

$$\begin{split} \frac{\delta f}{\delta s} &= \frac{\delta f}{\delta x} \frac{\delta x}{\delta s} + \frac{\delta f}{\delta y} \frac{\delta y}{\delta s} + \frac{\delta f}{\delta z} \frac{\delta z}{\delta s} \\ \frac{\delta f}{\delta t} &= \frac{\delta f}{\delta x} \frac{\delta x}{\delta t} + \frac{\delta f}{\delta y} \frac{\delta y}{\delta t} + \frac{\delta f}{\delta z} \frac{\delta z}{\delta t} \end{split}$$

Critical Points

P=(a,b) is a *critical point* if $f_x(a,b)=0$ or $f_x(a,b)$ does not exist, and $f_y(a,b)=0$ or $f_y(a,b)$ does not exist.

The discriminant of f(x,y) at P=(a,b) is defined as the quantity:

$$D(a,b) = f_{xx}(a,b) \times f_{yy}(a,b) - f_{xy}^{2}(a,b)$$

The second derivative test allows us to categorize critical points. Give a critical point, (a,b) on f:

$$\begin{array}{ccc} D(a,b)>0, \ f_{xx}(a,b)>0 \implies \text{local minimum} \\ D(a,b)>0, \ f_{xx}(a,b)<0 \implies \text{local maximum} \\ D(a,b)<0 \implies \text{saddle point} \\ D(a,b)=0 \implies \text{test inconclusive} \end{array}$$

To find extreme values, first find the values at the critical points, then compare to the maximum value along the boundary.

Lagrange Multipliers

If the local extreme of f(x,y) is subject to a constraint, g(x,y)=0, then we can say that the critical points satisfy the Lagrange condition $\nabla f_P=\lambda \nabla g_P$. This is equivalent to the Lagrange equations:

$$f_x(x,y) = \lambda g_x(x,y)$$

$$f_y(x,y) = \lambda g_y(x,y)$$

For functions in 3 variables, use 2 constraints: g(x,y,z)=0 and h(x,yz)=0, then use two Lagrange multipliers:

$$\nabla f = \lambda \nabla g + \mu \nabla h$$

Multiple integration

Multiple integration can be computed in any order, for example:

$$\iint f(x,y) \, dx \, dy = \iint f(x,y) \, dy \, dx$$

Just integrate them as if they were single integrals, multiple times. This property is known as *Fubini's theorem*.

Riemann Sums in Multiple Variables

A Riemann sum for f(x,y) on $\mathscr{R}=[a,b]\times [c,d]$ is a sum in the form:

$$S_{N,M} = \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \Delta x_i \Delta y_j$$

Double integrals over complex regions

Assume that \mathscr{D} is a closed, bounded domain whose boundary is a simple closed curve that is either smooth or has a finite number of corners. The double integral is defined by:

$$\iint_{\mathcal{D}} f(x,y)dA = \iint_{\mathcal{R}} \tilde{f}(x,y)dA$$

where $\tilde{f}(x,y)=f(x,y)$ if $(x,y)\in \mathscr{D}$, otherwise $\tilde{f}(x,y)=0.$

If $\mathscr D$ is vertically simple, meaning $a \le x \le b$ and $g_1(x) \le y \le g_2(x)$, then evaluate:

$$\int_{a}^{b} \int_{q_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

If \mathscr{D} is horizontally simple, meaning $h_1(y) \leq x \leq h_2(y)$ and a < y < b, then evaluate:

$$\int_{a}^{b} \int_{h_{1}(x)}^{h_{2}(x)} f(x,y) \, dx \, dy$$

Properties of Multiple Integration

If m is the minimum value and M is the maximum value of f on \mathcal{D} , then

$$m \cdot \operatorname{area}(\mathscr{D}) \leq \iint_{\mathscr{D}} f(x,y) \, dA \leq M \cdot \operatorname{area}(\mathscr{D})$$

If $z_1(x,y) \leq z_2(x,y) \ \forall (x,y) \in \mathscr{D}$, then the volume, V, of the solid region between the surfaces given by $z = z_1(x,y)$ and $z = z_2(x,y)$ over \mathscr{D} is

$$V = \iint_{\mathscr{Q}} (z_2(x,y) - z_1(x,y)) dA$$

Mean value theorem

The mean value of f over \mathscr{D} , \bar{f} is

$$\bar{f} = \frac{1}{\mathsf{area}(\mathscr{D})} \iint_{\mathscr{D}} f(x,y) \, dA = \frac{\iint_{\mathscr{D}} f(x,y) \, dA}{\iint_{\mathscr{D}} 1 \, dA}$$

If f(x,y) is continuous and \mathscr{D} is closed, bounded, and connected, there exists a point P such that $f(P) = \bar{f}$.

Integration in other coordinate systems

Integration in polar coordinates:

$$\begin{split} \iint_{\mathscr{D}} f(x,y) \, dA &= \\ \int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2} f(r\cos(\theta), r\sin(\theta)) r \, dr \, d\theta \end{split}$$

Integration in cylindrical coordinates:

$$\iint_{\mathcal{D}} f(x, y, z) dA = \int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2} \int_{z_1(r, \theta)}^{z_2(r, \theta)} f(r \cos(\theta), r \sin(\theta), z) r dz dr d\theta$$

Integration in spherical coordinates

$$\iint_{\mathscr{D}} f(x, y, z) dA = \int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} \int_{\rho_1}^{\rho_2} f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \rho^2 d\rho d\phi d\theta$$

Masses

For a mass with constant density, the center of mass coincides with the *centroids*, or geometric centers \bar{x} , \bar{y} , and \bar{z} , where

$$\langle \bar{x}, \bar{y}, \bar{z} \rangle = \frac{1}{A} \iiint_{\mathscr{D}} \langle x, y, z \rangle dA$$

$$A = \iiint_{\mathscr{D}} 1 dA$$

For a mass with density function $\delta(x, y, z)$

$$\begin{split} \text{mass } M &= \iiint_{\mathscr{W}} \delta(x,y,z) \, dV \\ \text{moment } M_{yz} &= \iiint_{\mathscr{W}} x \delta(x,y,z) \, dV \\ \text{moment } M_{xz} &= \iiint_{\mathscr{W}} y \delta(x,y,z) \, dV \\ \text{moment } M_{xy} &= \iiint_{\mathscr{W}} z \delta(x,y,z) \, dV \\ \text{center of mass} &= \left\langle \frac{M_{yz}}{M}, \frac{M_{xz}}{M}, \frac{M_{xy}}{M} \right\rangle \end{split}$$

Probability

Random variables X and Y have the joint probability density function p(x,y) if

$$\mathbb{P}(a \le X \le b; c \le Y \le d) = \int_{x=a}^{b} \int_{y=c}^{d} p(x, y) \, dx \, dy$$

A joint probability density function must satisfy $p(x,y) \geq 0$ and

$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} p(x,y) \, dx \, dy = 1$$

Vector Fields

A vector field assigns a vector to every point in a domain. It is generally represented by a triple or double for vectors. For example, $\vec{F}=\langle F_1,F_2,F_3\rangle$. We assume that each component is a smooth function on its domain.

The *del* or *nabla* operator, ∇ , defines 3 operations for vectors, *gradient*, *divergence*, and *curl*.

$$\begin{split} \operatorname{grad}(f) &= \nabla f = \left\langle \frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}, \frac{\delta f}{\delta z} \right\rangle \\ \operatorname{div}(\vec{F}) &= \nabla \cdot \vec{F} = \frac{\delta F_1}{\delta x} + \frac{\delta F_2}{\delta y} + \frac{\delta F_3}{\delta z} \\ \operatorname{curl}(\vec{F}) &= \nabla \times \vec{F} = \langle \frac{\delta F_3}{\delta y} - \frac{\delta F_2}{\delta z}, \frac{\delta F_3}{\delta x} - \frac{\delta F_1}{\delta z}, \frac{\delta F_2}{\delta x} - \frac{\delta F_1}{\delta y} \rangle \end{split}$$

Line Integrals

An oriented curve $\mathscr L$ is a curve with a direction. The arc-length differential is $ds = ||\vec{r'}(t)||dt$. The scalar line integral over $\mathscr L$ with parameterization $\vec{r}(t)$ is:

$$\int_{\mathcal{L}} f(x, y, z) ds = \int_{a}^{b} f(\vec{r}(t)) ||\vec{r'}(t)|| dt$$

The *vector line integral* over $\mathscr L$ with parameterization $\vec r(t)$ is:

$$\int_{\mathscr{L}} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r'}(t) dt$$

This is equivalent to

$$\int_{\mathscr{S}} \vec{F} \cdot d\vec{r} = \int_{a}^{b} F_1 dx + F_2 dy + F_3 dz$$

The parameterization of \mathcal{L} must be regular $(\vec{r'}(t) \neq \vec{0})$ and must trace \mathcal{L} in the positive direction.

Applications of Line Integrals

If $\rho(x,y,z)$ is the mass or charge density along \mathscr{L} , the total mass or charge is equal to the scalar line integral:

$$\int_{\mathcal{Q}} \rho(x, y, z) \, ds$$

If \vec{F} is the force exerted on an object along a path \mathscr{L} , the work, W exerted on that object is equal to:

$$W = \int_{\mathscr{L}} \vec{F} \cdot d\vec{r}$$

The work performed against F is equal to:

$$-\int_{\mathscr{L}} \vec{F} \cdot d\vec{r}$$

Conservative Vector Fields

A vector field is considered *conservative* if $\vec{F} = \nabla f$. f is called a *potential function* for \vec{F} . Any two potential functions, f, differ only by a constant term (assuming an open, connected domain). A conservative vector field also satisfies the condition $\nabla \times F = 0$.

A vector field \vec{F} on a domain \mathscr{D} is path independent if for any two points $P,Q\in\mathscr{D}$, where \mathscr{L}_1 and \mathscr{L}_2 are curves in \mathscr{D} from P to Q. A vector field \vec{F} on a domain \mathscr{D} is path independent if for any two points $P,Q\in\mathscr{D}$, where \mathscr{L}_1 and \mathscr{L}_2 are curves in \mathscr{D} from P to Q.

$$\int_{\mathcal{L}_1} \vec{F} \cdot d\vec{r} = \int_{\mathcal{L}_2} \vec{F} \cdot d\vec{r}$$

The Fundamental Theorem for Conservative Vector Fields states that, if $\vec{F} = \nabla f$, then, for any path from P to Q in the domain of \vec{F} :

$$\int_{\mathscr{L}} \vec{F} \cdot d\vec{r} = f(Q) - f(P)$$

Therefore, all conservative vector fields are path independent. The converse is also true: on an open, connected domain, a path independent vector field is conservative.

One special case of this is where \vec{r} is a closed path (P=Q):

$$\oint_{\mathscr{L}} \vec{F} \cdot d\vec{r} = 0$$